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COULOMB FRICTION OSCILLATOR: MODELLING AND
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In this paper we revisit a mass}spring}friction oscillator, where the friction refers
to Coulomb's perfect dry contact friction. We re"ne the model formulation of the
friction force and "nd that the equation of motion of the oscillator is a two-phase
linear system with a slide-stick switch, rather than the usual three-phases
equations. Also we obtain a simple slide}slide condition. Then the exact solution of
the response to simple harmonic loading is obtained. With the aid of the long-term
behavior of the exact solution, the steady motions of the oscillator with 0, 1, 2, 4, 6,
8, 10, 12, 14 stops per cycle are categorized in the parametric space of the ratios of
forces and frequencies. Stops of zero duration are further classi"ed into two types:
normal stops and abnormal stops, the criteria of which are also given.
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1. INTRODUCTION

The study of non-linear, hysteretic behavior of mechanical systems has been of
great interest to engineers and researchers in a variety of engineering "elds, since
many engineering systems exhibit hysteretic behavior under cyclic loading.
A survey of various non-linear oscillators was given in, for example, Nayfeh and
Mook [1]. In this paper, we study a single-degree-of-freedom oscillator with the
parallel presence of a linear spring and a Coulomb friction device, which is
subjected to external loading or base excitation. A schematic drawing is given in
Figure 1 displaying a mass}spring system with the mass possibly sliding against
a dry surface when subjected to an external load p(t).

The equation of motion of the oscillator is

mxK (t)#k[x(t)!x
eq

]#r
a
(t)"p(t), (1)

where a superposed dot represents time di!erentiation: x, xR , xK and m are the
position co-ordinate, velocity, acceleration and mass, respectively, of the body of
the oscillator; k is the sti!ness of the spring; x

eq
is the (static equilibrium) position of

the body of the oscillator at which the spring is not stretched so that the spring force
is zero; r

a
is the friction force acting in a direction opposite to the direction of the
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Figure 1. The mass}spring}friction oscillator, where the friction refers to Coulomb's perfect dry
friction between the mass and the ground surface: (a) mass excitation, (b) base excitation.
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motion;s and p(t) denotes external loading. If the mass is subjected to a base
translation u

g
(t), as shown in Figure 1(b), the equation of motion may be recast to

the same equation (1) by letting p(t)"ku
g
(t) and re-designating x, xR , xK , to be

relative to the base. Thus, the slight di!erence between the mass excitation as in
Figure 1(a) and the base excitation as in Figure 1(b) will henceforth in this paper be
seldom mentioned again.

As early as in 1931, Den Hartog [2] presented a closed-form solution for the
steady state zero-stop response of a harmonically excited oscillator with Coulomb's
friction. Since then more contributions to this vibration issue have been made
[3}12]. Nevertheless, if attention is focused on the friction force itself instead of the
whole equation of motion, it is found that even the simplest case, the Coulomb
perfect dry contact friction, still lacks an accurate and complete mathematical
expression. To precisely formulate the constitutive law for the friction force r

a
, the

old issue of the modelling of Coulomb's perfect dry contact friction is reconsidered
in Section 2. The conditions for sliding and sticking and their respective governing
equations of motion are formulated in Section 3, and then the exact solutions of the
responses to simple harmonic loading are obtained in Section 4. Also in Section 4,
the responses are classi"ed according to the number of stops per cycle of the steady
state response.

2. MODELLING FRICTION

The following expression

r
a
"G

r
y

if xR '0,
!r

y
if xR (0

(2, 3)

is usually used to represent the two-valuedness of Coulomb's perfect dry contact
friction, as shown in Figure 2(a). It is assumed that r , m and k are positive constants
sGenerally speaking, for formulating dynamic equations (Newton's law, equation (1)) every kind of
constitutive forces (e.g., the spring force, viscous force, friction force) is opposite to the direction to
motion (including x, xR , xK ); however, for formulating constitutive equations (Coulomb's law, equations
(2,3) or (7}9) or (10}13) the constitutive forces are in the same directional sense as the motion.

y



Figure 2. The relation between the friction force r
a
and velocity xR : (a) two-valued representation, (b)

multiple-valued representation: (c) the relation of the friction force r
a
and displacement x.
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to be determined experimentally,

m'0, k'0, r
y
'0. (4}6)

If the contact surfaces are horizontal on the earth ground, r
y
"kmg, where g is the

acceleration due to gravity and k is the coe$cient of friction. This formalism is
correct but incomplete; equations (2, 3) are good for the sliding motion but contain
no information about sticking. In fact, the friction force r

a
may take anyt value

between !r
y

and r
y

where xR "0; therefore, the following expression provides
a more precise description:

r
a G

"r
y

if xR '0

3[!r
y
, r

y
] if xR "0,

"!r
y

if xR (0.

(7}9)

Figure 2(b) depicts its graphical representation. Notice the distinction between the
two-valuedness of r

a
in equations (2, 3) and Figure 2(a) and the multiple-valuedness

of r
a
in equations (7}9) and Figure 2(b). It can be seen that the equation of motion

has three phases upon substituting equations (7}9) for r
a

in equation (1).
Nevertheless, the formalism (7}9), although correct, is not complete yet, since it

still lacks a two-way relation between xR and r
a
. For completeness, we need a #ow

rule (10) and complementary trios (11)}(13) as follows:

xR "
KQ
r2
y

r
a
, Dr

a
D)r

y
, KQ *0, Dr

a
D KQ "r

y
KQ , (10}13)

where KQ is the friction power, so that K is the dissipated energy due to friction.
According to this formulation, the relation of r

a
and x is schematically shown in
tThis is for formulating constitutive equations. For formulating dynamics equations, the friction
force takes on a certain de"nite value that should balance the other forces within the range [!r

y
, r

y
].
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Figure 2(c),A which can be seen to convey more information than Figure 2(b). It is
not di$cult to verify that equations (10}(13) imply equations (7}9), but conversely
that equations (7}9) do not su$ce to lead to equations (10)}(13).

Proof. Given equations (10)}(13), we "rst consider the "rst case of equations (7}9):
the condition xR '0 leads to KQ r

a
'0 via equation (10) and (6). Then it follows from

inequality (12) that KQ '0 and r
a
'0. Further by equation (13) is should be Dr

a
D"r

y
and then r

a
"r

y
. Second, let us consider the second case: the condition xR "0

implies that r
a
"0 or KQ "0 in view of equations (10) and (6). Either one complies

with !r
y
)r

a
)r

y
of inequality (11). Finally, consider the third case: the condition

xR (0 implies KQ r
a
(0 by the same token, and then KQ '0 and r

a
(0 by inequality

(12), and then r
a
"!r

y
by equation (13). Summarizing the above three cases, we

conclude that equations (10)}(13) imply equations (7}9).
Conversely, if starting from equations (7}9), one has no information about the

relation among r
a
, xR and KQ . Therefore, equations (7}9) are not su$cient to derive

equations (10), (12) and (13). K

A signi"cant merit of equations (10)}(13) is that they can be easily extended to
two or more dimensions, as shown in Appendix A, so that consistent n-dimensional
friction models with n"1, 2, 3,2 are available.

In view of equation (1), the constitutive force} r (t) of the oscillator can be de"ned
as

r"r
a
#r

b
(14)

with r
a
modelled by equations (10)}(13) and r

b
by

r
b
(t)"k[x(t)!x

eq
],

or in rate form

rR
b
"kxR . (15)

Thus, the relation between the constitutive force function r(t) and the position
co-ordinate function x (t) is described by equations (10)}(15), which may be
schematically illustrated in Figure 3(a). Equation (10) is a #ow rule, giving
a two-way relation between the velocity xR and the friction force r

a
via

a proportional multiplier equal to the friction power KQ divided by the friction
bound squared r2

y
. Equation (11) speci"es an admissible range of the friction force.

Equation (12) forbids a negative friction power, so that the velocity is either zero or
in the same directional sense as that of friction force (see footnotes). Equation (13)
allows either KQ "0 (the sticking phase) or Dr

a
D"r

y
(the sliding phase). Equation (14)
AThe explanations of the precise meanings of the solid and dotted vertical lines as in Figures 2(c),
3(a), 6(c) and 6(g) are relegated to section 3.4.

}The constitutive force is a convenient term used sometimes to refer grossly to the spring force,
viscous force, friction force, etc. It may be called the restoring force, or some other appropriate term.



Figure 3. (a) The relation between the constitutive force r and displacement x, (b) arrangement of
mechanical elements.

COULOMB FRICTION OSCILLATOR 1175
is the decomposition of the constitutive force. Equation (15) is a linearly
(hypo)elastic law for the spring force. The mechanical-elements arrangement
displayed in Figure 3(b) may help illustrate the mechanisms implied in Figure 1 and
help explain the meanings of the constitutive equations (10)}(15).

Notice in passing that the model of equations (10)}(15) is a special case of the
bilinear elastoplastic model discussed by Liu [13], which has been used intensively
in the analyses of isolation systems of buildings and equipment in recent years. See,
for example, Skinner et al. [14], where the bilinear model describing the relation
between the constitutive force and the relative velocity of the two end-plates of
a seismic isolator was combined with the equation of motion to simulate the
hysteretic motion and dissipation capacity of the isolator.

3. SLIDING AND STICKING

3.1. TWO PHASES

The complementary trios (11}13) imply there are precisely two phases: (1) KQ '0
and Dr

a
D"r

y
, (2) KQ "0 and Dr

a
D)r

y
. The complementary trios can be interpreted as

the heavy two-segement line in Figure 4(a), and in Figure 4(b) the two phases are
further distinguished as the two segments of the two-segment line. It cannot be
overemphasized that among equations (10}15) the key of precisely two phases is
equation (13).

For phase (1), KQ '0 and Dr
a
D"r

y
, so KQ "r

a
xR '0 by equation (10). For phase (2),

KQ "0 and Dr
a
D)r

y
, so xR "0 by equation (10) and then KQ "r

a
xR "0. Therefore, the

friction power formula

KQ "r
a
xR

holds for the two phases.
Phases (1) is nothing but the sliding phase, since KQ "r

a
xR '0 means xR O0 so that

the contact surfaces slide relative to each other and dissipation occurs due to
friction between the sliding surfaces. Phase (2) is obviously the sticking phase, since
KQ "0 drastically reduces equation (10) to xR "0, which indicates that the contact
surfaces are sticking. In the sliding phase, the sliding friction causes positive
dissipation and the oscillator exhibits hysteretic behavior, while in the sticking



Figure 4. The complementary trios (11}13) appear as (a) a two-segment line composed of (b) two
segments: (1) the sliding phase MKQ '0 and D r

a
D"r

y
N and (2) the sticking phase MKQ "0 and D r

a
D)r

y
N.

Figure 5. A typical motion with the time intervals of slide}stick}slide and slide}slide with a zero-
duration stop.
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phase the oscillator is at rest and no dissipation occurs. Thus, the history of the
motion of the friction oscillator may be composed of a succession of contiguous
time intervals (see Figure 5), sliding-phase intervals being interlaced with
sticking-phase intervals, but the time duration of a sticking-phase interval can be
"nite, in"nite (permanent sticking, shakedown), or zero (see section 3.4).

3.2. THE SLIDING PHASE

In this section and the following, we derive the governing equations for the two
phases, which will soon be seen to be expressed in terms of not only the
displacement function x (t) but also the restoring force function r(t). In terms of r(t),
equation (1) changes to

mxK (t)#r(t)"p (t). (16)

It follows from equations (14) and (15) that

r(t)"r (t
i
)#r

a
(t)!r

a
(t
i
)#k[x(t)!x (t

i
)] (17)

for the two time instants t and t
i
. Substituting equation (17) for r into equation (16),

we have

mxK (t)#kx(t)#r
a
(t)"p(t)!r(t

i
)#r

a
(t
i
)#kx(t

i
). (18)
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In the sliding phase , Dr
a
D"r

y
, and so in a sliding-phase interval rR

a
"0, that is,

r
a
(t)"r

a
(t
i
), (19)

where the initial time t
i

is chosen to be the start-to-slide time t
slide

of the
sliding-phase interval under consideration. Hence, equation (18) can be simpli"ed
to

mxK (t)#kx(t)"p(t)!r(t
i
)#kx(t

i
). (20)

With the constitutive force on the right-hand side, this equation should be
supplemented by

r(t)"r(t
i
)#k[x (t)!x (t

i
)] (21)

which is equation (17) but with equation (19) taken into account. Equations (20)
and (21) together are the sliding-phase governing equations for x (t) and r(t). They
are coupled.

3.3. THE STICKING PHASE

In a sticking-phase interval, KQ "0, and so by equations (6), (10) and (15) we have

r
b
(t)"r

b
(t
i
), (22)

x(t)"x (t
i
), (23)

where the initial time t
i

is now chosen as the start-to-stick time t
stick

of the
sticking-phase interval. In view of equations (16) and (23), the constitutive force is
given by

r (t)"p(t). (24)

Equations (23) and (24) together are the sticking-phase governing equations for x(t)
and r(t). They are uncoupled.

The above analysis shows that the oscillator is described by the linear equations
(23) and (24) during the sticking phase, but governed by the linear di!erential
equations (20) and (21) in the sliding phase. Hence, it is a two-phase linear system
with a slide}stick switch.

3.4. THE SLIDE-SLIDE CONDITION

It is interesting to "nd the condition under which the time duration of
a sticking-phase interval to be zero. The transition (say at time t) from
a sliding-phase interval to a sticking-phase interval of non-zero time duration (a
solid vertical line in Figures 2(c), 3(a), 6(c) and 6(g)) is possible only if
Dp (t)!kx(t) D(r

y
. Otherwise, a sliding-phase interval will jump to another
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sliding-phase interval with a sticking phase of zero time duration (a dotted vertical
line in Figures 2(c), 3(a), 6(c) and 6(g)) present in between the two sliding-phase
intervals, but both the sliding-phase intervals are modelled by the same governing
equations.

If at the time instant t

D p(t)!kx(t) D*r
y
, (25)

the duration of the sticking-phase interval is zero (such an interval is referred to
later on as a zero-duration stop), resulting in the oscillator jumping from
a sliding-phase interval to another sliding-phase interval. Therefore, equation (25)
may be called the slide}slide condition. Note that condition (25) is much simpler
than that proposed by Makris and Constantinou [11].

4. RESPONSE TO HARMONIC LOADING

In what follows, the driving force is taken to be simple harmonic with a single
driving (angular) frequency u

d
,

p (t)"p
0

sinu
d
t"ku

g0
sinu

d
t, (26)

where p
0

is the amplitude of the periodic force acting on the mass, and u
g0

is the
amplitude of the periodic base excitation.

4.1. EXACT SOLUTION

To input (26) the response in the sliding phase can be obtained by solving
equations (20), (21) and (26) as follows:

x(t)"x (t
i
)#

xR (t
i
)

u
n

sin u
n
(t!t

i
)!

r(t
i
)

k
[1!cosu

n
(t!t

i
)]

#A [sin u
d
t!cosu

n
(t!t

i
) sinu

d
t
i
!) sinu

n
(t!t

i
) cosu

d
t
i
], (27)

where u
n

:" Jk/m is the natural frequency, and

A :"
p
0

k (1!X2)
, X :"

u
d

u
n

. (28, 29)

Instead of the usual two formulas (one for xR '0 and the other for xR (0; see, for
example, equations (4) and (5) in reference [11]), the exact solution (27) consists of
only one formula. Containing the constitutive force on the right-hand side,
equation (27) should be supplemented by equation (21). In the sticking phase the
response is simply given by equations (23) and (24).



Figure 6. Two typical responses of the mass}spring}friction oscillator with sticking of (a)}(d) under
smaller driving force and sliding of (e)}(h) under larger driving force.
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Some results about the responses are shown in Figure 6, in which the parameters
used were m"200 kN s2/m, k"5000 kN/m, r

y
"200 kN, u

d
"8n rad/s and

p
0
"ku

g0
"300 kN for (a)}(d) and p

0
"ku

g0
"1000 kN for (e)}(h).
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4.2. THE START-TO-STICK TIME

Since a sliding-phase interval is switched o! at the same instant when
a sticking-phase interval is switched on, the start-to-stick time t

stick
of the

sticking-phase interval is the end time of the sliding phase, which is determined by
solving xR (t)"0 for t"t

stick
with the x (t) given by equation (27). The resulting is

a transcendental equation, and so a numerical method may be invoked to calculate
the start-to-stick time.

4.3. THE START-TO-SLIDE TIME

Owing to simplicity in the sticking-phase equations, the start-to-slide time
t"t

slide
, which is the end time of the preceding sticking-phase interval, can be

determined exactly by solving

D p
0
sinu

d
t
slide

!kx(t
i
) D"r

y
.

For this purpose, let us de"ne two bounds of the ratio r (t
i
)/p

0
:

b
1

:"
kx(t

i
)#r

y
p
0

, b
2

:"
kx(t

i
)!r

y
p
0

, b
1
'b

2
,

where t
i

is the initial time of the sticking-phase interval under investigation.
Dividing the values of b

1
, b

2
into seven cases (see (a)}(g) in Figure 7), we have the

start-to-slide time formulae:

t
slide

"G
t
i

if b
1
'1 and b

2
(!1 (a),

R if b
1
(!1 or b

2
'1 (b),

!3#4*/ b
1u

d
if 0(b

1
)1 and b

2
(!1 (c),

!3##04 b
1u

d
if b

2
(!1)b

1
)0 (d),

!3#4*/ b
2u

d
if 0(b

2
)1(b

1
(e),

!3##04 b
2u

d
if b

1
'1 and !1)b

2
)0 (f),

min(t
1
, t

2
) if !1)b

2
(b

1
)1 (g),

(30}36)

where

t
j
"G

!3#4*/ b
ju

d
if b

j
'0,

!3##04 b
ju

d
if b

j
(0

for j"1, 2. In the above formulae, the values of arcsin and arcoss should be taken
such that t

i
)t

slide
(t

i
#2n/u

d
. Case (a) is nothing but the case of zero-duration

stop (see Figure 5), that is, the case satisfying the slide}slide condition (25), while
case (b) is the case of permanent sticking.



Figure 7. The determination of the start-to-slide time should consider seven cases.
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4.4. CLASSIFICATION OF THE STEADY-STATE BEHAVIOR

It is known from the exact solution obtained above and evidenced in, for
example, Figures 6(d) and 6(h) that the response of the harmonically excited
oscillator even with the presence of friction tends to steady periodic motion in the
long run. The motion is said to be in steady state. In fact, in many occasions
especially for engineering design purposes, we are often more concerned with the
steady-state response rather than the transient response. Since one of the most
notable features of the friction oscillators is sticking, we may classify in a space of
parameters the long-term steady state behavior by the number of stops per cycle of
the simple harmonic driving force. In view of the "ve constants m, k, r

y
, p

0
, u

d
that

we have, let us de"ne the force ratio

a :"
p
0

r
y

and the frequency ratio

X :"u
d
/u

n
"u

d
/Jk/m .

Thus, it is clear that the two dimensionless parameters (1/a, X) play the role of
classifying the steady state behavior.

Based on a study of 2500 ("50]50) cases, we found that there were many types
of steady-state behavior: permanent sticking, zero stop per cycle (i.e., non-sticking
oscillation), one stop per cycle, two stops per cycle, four stops per cycle, six stops
per cycle, and so on. In Figure 8, the distribution of these types of behavior is



Figure 8. The distribution of the nine types of motions: permanent sticking, zero stop per cycle (i.e.,
non-sticking oscillation) one stop per cycle and 2, 4, 6, 8, 10 and more stops per cycle in the parametric
plane (1/a, X). 1/a"r

y
/p

0
, X"u

d
/u

n
: K, zero stop; ], one stop; n, two stops; r, four stops; d, six

stops; c, eight stops; 5, ten stops; +, more stops.
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plotted in the plane (1/a, X) in the ranges of 0(1/a(1)1 and 0(X(1)5. The
blank part of this plot represents the permanent sticking type. It is seen that most of
the motions had zero or a small even number of stops per cycle, and only a small
number of motions had higher even numbers of stops per cycle, the pattern of the
distribution being rather complicated. Notice that there were three cases among the
2500 cases which had one stop per cycle. Figure 9 provides a "ner view in the range
of 0)4(1/a(1)0 and 0(X(0)1, in which most cases had more than 10 stops per
cycle for X(0)04 (i.e., when the driving frequency is rather small if compared with
the natural frequency).

The responses are demonstrated in Figures 10 and 11, with the parameters
1/a"0)7 and X"1)2 for Figure 10 and 1/a"0)7 and X"0)03 for Figure 11. The
period 2n/u

d
of the simple harmonic input was taken to be 1 s for the calculations.

In the plots the sliding motion is represented by the thin line while the sticking one
is marked by the black heavy line. As shown in Figure 10, each of the "rst three



Figure 9. A more re"ned version of the distribution of the types of motions. 1/a"r
y
/p

0
, X"u

d
/u

n
:

m, two stops, r, four stops; d, six stops; c, eight stops; 5, ten stops; +, more stops.
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cycles had two stops, but the time durations of the stops tended to diminish. After
those the fourth cycle had one stop and all the following cycles had zero stop. It was
as late as about the 10th cycle a stabilized loop in the phase plane (x, xR ) was
obtained (see Figure 10). Therefore, the steady state response for (1/a, X)"(0)7, 1)2)
must be classi"ed as zero stop per cycle (see Figure 8), not as two stops or one stop
per cycle. Similarly, for the case of Figure 11 there were 10 stops in the "rst cycle but
12 stops in each of the following cycles,E and so steady state behavior of (1/a,
X)"(0)7, 0)03) must be classi"ed as 12 stops per cycles. The loop of the steady state
in the phase plane was still simple and closed (see Figure 11), but it was much more
complicated than that of Figure 10. For illustration we select and display in Figure
12 eight typical types of steady-state behavior: zero stop per cycle with parameters
(1/a, X)"(0)6, 1)8), two stops per cycle with (0)9, 1)5), four stops per cycle with (0)6,
0)105), six stops per cycle with (0)75, 0)06), eight stops per cycle with (0)85, 0)03), 10
E For clarity and space saving only the "rst, fourth, 10th and 15th cycles are shown.



Figure 10. An example with 1/a"0)7 and X"1)2 to demonstrate the steady motion, where the
time duration of the stops are gradually diminished to zero after the "fth cycle, so in its steady state the
motion is zero stop per cycle.
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stops per cycle with (0)8, 0)03), 12 stops per cycle with (0)7, 0)03), and 14 stops per
cycle with (0)576, 0)03). It can be seen that the number of stops per cycle is equal to
the number of humps in the phase plane (x, xR ) and to the number of humps in the
velocity history (t, xR ).

4.5. MAGNIFICATION FACTORS

In a steady-state response analysis, we merely want to know the maximum values
and the phase lags of the steady state responses, for those values convey crucial
information about the oscillator and help us understand its main behavior. For
these let us de"ne the magni"cation factor of displacement and the magni"cation



Figure 11. An example with 1/a"0)7 and X"0)03 to demonstrate the steady motion, where
initially it is 10 stops per cycle, but in its steady state the motion is 12 stops per cycle.
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factor of velocity, respectively, as follows:

D
mf

:"
kD

0
p
0

, <
mf

:"
k<

0
u

d
p
0

, (37, 38)

where D
0

and <
0

denote the maximum displacement and the maximum velocity,
respectively, in the steady state. In Figure 13 the variations of these two factors with
respect to the frequency ratio X are shown for 1/a"0)1, 0)2, 0)3, 0)4, 0)5 and 0)6.
For X"1 resonance occurs for all a, and both D

mf
and <

mf
tend to in"nity.

4.6. NORMAL STOPS VERSUS ABNORMAL STOPS

Stops with zero duration may be further classi"ed into two types [11]: normal
stop and abnormal stop. The former occurs when the displacement reaches a local



Figure 12. Illustration of the typical behavior of various numbers of stops per cycle in the steady
state.
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extremum and the mass reverses its direction of motion at a turning point. The
criteria for the normal stop are

D p(t)!kx(t) D*r
y

and r
a
(t)xK (t)(0 (39)

at the time moment t with xR (t)"0. The abnormal stop occurs when the
displacement is less than its local extremum and, upon separation, the mass moves
in the same direction as its motion prior to the stop. The criteria for the abnormal



Figure 13. The variations of the magni"cation factors with respect to the frequency ratio for several
values of the force amplitude ratio a. 1/a"r

y
/p

0
, X"u

d
/u

n
: }#}, r

y
/p

0
"0)1; K*, 0)2, }}d}} , 0)3; ]*,

0.4; m*, 0)5; }}r}} , 0)6.
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stop are

D p (t)!kx(t) D*r
y

and r
a
(t)xK (t)'0. (40)

In Figure 14 the two types of motions are demonstrated with the help of their local
time histories of displacement and velocity and the curves in the phase plane (x, xR ).
The control parameters which allow the occurrence of zero-duration stops with
normal or abnormal types are displayed in Figure 15. The number of abnormal
stops is counted within one cycle of the periodic steady state. For each X "xed, the



Figure 14. Stops with zero duration are divided into two types: normal stops and abnormal
stops.
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critical value a
c
is calculated by

a
c
"SA

1
X2

!1B
2

C1#A
Xsinn

1
1#cosn

1
B
2

D , (41)

which will be derived in reference [15]. In the range a(a
c
, there exist abnormal

stops before a turning point. For example, for the case of (1/a, X)"(0)3, 0)012),
2n/u

d
"1 s, there are two abnormal stops in the third cycle (2)t(3 s) as shown

in Figure 16.



Figure 15. The distribution of the stops with zero duration in the range 0(1/a(0)3 and
0(X(0)3. 1/a"r

y
/p

0
, X"u

d
/u

n
: d, normal stop; m, one abnormal stop;l, two abnormal stops;

#, more abnormal stops.
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5. CONCLUSIONS

According to the above study we draw the following conclusions:

(1) By verifying that equations (10)}(13) su$ce to derive the conventional relations
(7}9) but the converse is not true, we have shown that the conventional
relations (7}9) is correct but incomplete, that Coulomb's friction is described
completely by equations (10}13), and that the relation between the constitutive
force and displacement for the mass}spring}friction oscillator is described by
equations (10}15). We have also shown that equations (10}13) have the
higher-dimensional counterpart, equations (A1}A4).

(2) Precise criteria for sliding and sticking have been derived in section 3.1. In
most studies, this problem was treated as three phases, and correspondingly
there were also three governing equations, one for each phase. In this paper,
the complete and correct formulation has led to precisely two phases, sliding
and sticking, resulting in more concise governing equations in terms of the



Figure 16. An example with two abnormal zero-duration stops (marked with AS) for (1/a,
X)"(0.3, 0.012).
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position co-ordinate x (t) and the constitutive force r (t): equations (20) and
(21) are the sliding-phase governing equations while equations (23) and (24)
are the sticking-phase governing equations as well as exact solutions.

(3) The simple formula (25) can identify a zero-duration stop and hence expresses
the slide}slide condition, and, furthermore, the simple criteria (39) and (40)
can distinguish between a normal zero-duration stop (39) and an abnormal
zero-duration stop (40).

(4) The above three conclusions apply to the Coulomb friction oscillator
subjected to general loading. For simple harmonic loading we have obtained
the exact solutions: equations (27) and (21) for the sliding phase, section 4.2
for the start-to-stick time, equations (23) and (24) for the sticking phase, and
equations (30}36) for the start-to-slide time.
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(5) In the steady state the non-sticking oscillation (zero stop per cycle) and the
sliding}sticking motion of a lower even number of stops per cycle have been
found to be the typical (more frequently occurring) behavior of the
harmonically excited friction oscillator. In the parametric space of ratios of
force and frequency the behavior has been classi"ed as in Figures 8 and 9.
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APPENDIX A: MULTI-DIMENSIONAL COULOMB FRICTION MODEL

It is di$cult to extend the one-dimensional model of equations (7}9) to higher
dimensions. However, the generalization of the model (10}13) to higher dimensions
is rather straightforward as shown below:

x5 "(KQ /r2
y
) r

a
, (A1)

Er
a
E)r

y
, (A2)
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KQ *0, (A3)

Er
a
EKQ "r

y
KQ , (A4)

where E r
a
E is the Euclidean norm of r

a
and r

a
and x are the n]1 matrices of friction

force and displacement, respectively, of the oscillator.
It is clear that equation (A1) may be replaced by

x5 "j0 r
a
, (A5)

where j0 is a proportional multiplier with

j"l/r
y
"K/r2

y
, (A6)

l being the sliding length and K dissipated energy due to friction. From equations
(A3) and (4}6) we have j0 *0 and lQ*0, the latter of which means the sliding length
is never decreasing, an obvious fact yet an indispensable ingredient for modelling.
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